
Comparison of Parallel Metaheuristics for flux optimization
for Induction Motor

VINCENT ROBERGE, MOHAMMED TARBOUCHI

Electrical and Computer Engineering
Royal Military College of Canada

PO Box 17000, Station Forces, Kingston, Ontario, K7K 7B4
CANADA

vincent.roberge@rmc.ca, tarbouchi-m@rmc.ca

Abstract: - An essential aspect of efficiency control of a three-phase induction motor is the ability to generate
the optimal magnetic flux required for different operating modes. In this paper, we use the genetic algorithm
(GA), the particle swarm optimization algorithm (PSO) and the simulated annealing (SA) to cope with the
complexity of the problem and compute feasible and quasi-optimal magnetic flux needed for three-phase
induction motors with time varying load and parameters. The characteristics of the optimal magnetic flux are
represented in the form of a multi-objective cost function that we developed. We reduce the execution time of
our solutions by using the “single-program, multiple-data” parallel programming paradigm and achieve real-
time performance on a multi-core CPU.

Key-Words: -magnetic flux optimization, genetic algorithm, particle swarm optimization, simulated annealing,
parallel computation

1 Introduction
For the control of an electric induction motor (IM)
variable speed, the magnetic flux must be adjusted
to obtain the best possible efficiency. The optimal
flux depending on the desired speed and torque is
often calculated using deterministic methods that
require considerable computing power. For this
reason, the calculation of magnetic flux is usually
done offline. This approach may not guarantee the
optimal expected performances because the state of
the machine changes during operation (temperature,
saturation and other constraints). As presented in
[1], [2] and [3], there are ways to reassess the
characteristics or parameters of the IM. It would
therefore be advantageous to calculate the optimal
flux in real time to continually enhance performance
even when the motor parameters change. To
minimize the computing time and to allow
embedded application, non-deterministic algorithms
seems excellent candidates for optimal flux
generation [4], [5], [6] and [7].

In this work, we develop and evaluate three non-
deterministic optimization algorithms to calculate
the flux maximizing the effectiveness of the
induction motor. To reduce the computation time
and allow real time performance, we also implement
and compare parallel versions of the three
algorithms. The remainder of this paper is organized
as follows. Section 2 deals with magnetic flux

control of an induction motor and identifies the
objective function to be optimized. Section 3
presents the three optimization algorithms used: the
genetic algorithm, the particle swarm optimization
and simulated annealing. Section 4 discusses our
parallel implementation of the three algorithms.
Finally, a comparison of results obtained by each
algorithm is presented in Section 5.

2 Optimizing the magnetic flux
of an induction motor
Today, the induction motors are the most used
machines in variable speed drives. For this reason,
several researchers linger to develop control
methods that optimize the efficiency of these
machines. As explained in [8], one of the challenges
in controlling induction motor whether using scalar,
vector control or other modern nonlinear techniques
is the generation of the optimal magnetic flux
required for different operating conditions. The
control modules commonly used normally maintain
the magnetic flux close to nominal values thus
ensuring good efficiency when the motor operates at
a speed and torque near the nominal point.
However, the efficiency decreases greatly when the
speed or torque varies. To improve efficiency, it is
important to adjust the flux when the speed or

WSEAS TRANSACTIONS on POWER SYSTEMS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-350X 352 Volume 9, 2014

torque changes. Still according to [8], two
approaches are mainly used: the method based on
the loss model and that based on the measurement
of power. In this paper we use the first approach and
show that non-deterministic optimization algorithms
(GA, PSO and SA) can be used to calculate the
optimal flux which minimizes the loss of the IM for
a given speed and load torque.

2.1 Loss model of induction motor
The synchronous reference frame model of a three-
phase IM is used [8]. The block diagram of the
control system under study is shown in Fig. 1. For
an angular velocity and torque points, the control
module uses an optimization algorithm that
calculates the optimum flux to minimize the IM
losses equation.

The losses in the IM are mainly composed of
rotor copper losses (), copper losses in the stator
(), iron losses () and mechanical losses ().
The losses of IM are calculated as follows:

 (1)

Fig. 1. Block diagram of the three-phase IM control
system

Since the mechanical losses are not related to
magnetic flux, they are omitted in calculation the
optimal flux. This same equation is presented in [9]
as follows where each term is defined in Table 1:

(2)

It is important to note that the synchronous angular
velocity can be approximated by the angular
velocity of the motor when the slip is negligible
(light load conditions). Still according to [9], the

magnetic flux and electromagnetic torque are
defined as follows:

 (3)

 (4)

The optimization problem of the magnetic flux as a
function of torque and speed is to find values for
and that minimize equation (2) while generating
an electromagnetic torque greater or equal to the
required torque . In addition, and must meet
two requirements: that of the maximum current and
maximum voltage.

 (5)

 (6)

where (7)

 is the maximum current possible and is
the maximum voltage possible. It is then possible to
represent the loss of IM, the electromagnetic torque
and the two constraints as a cost function that we
minimize using optimization algorithms described
the next section. In this cost function, and are
the variables to be optimized for given angular
speed and electromagnetic torque given:

where

(8)

 (9)

 (10)

where

(11)

 (12)

We use a very large constant (here) in
equations(9), (10) and (11) to separate the valid

WSEAS TRANSACTIONS on POWER SYSTEMS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-350X 353 Volume 9, 2014

solutions (those that produce the necessary torque
and respect the constraints) from the invalid ones.
This penalty is added in proportion to the degree
ofviolation of constraints and thus allows the
improvement of invalid solution in order to generate
valid ones. In this paper, all calculations are done
using the parameters used in [8] and [10] whose
values are reproduced in Table 1.

Table 1. Parameters of the IM used in this document

Parameter Symbols Values Units
Power 1100 W
Speed 157.08 rad/sec
Voltage 220 à 380 V
Current 3.4 A
Rated load torque 7 N*m
Number of pairs of poles 2
Stator resistance 8 Ω
Rotor resistance 3.1 Ω
Total leakage factor

 0.12 N/A

Mutual inductance 0.443 H
Stator leakage inductance 0.027 H
Rotor leakage inductance 0.027 H
Stator self-inductance

 0.47 H

Rotor self-inductance
 0.47 H

Inertia 0.06 SI
Viscous friction
coefficient f 0.00 SI

3. Optimization algorithms
In this section we present three optimization
algorithms that we implemented to find the values

 and that minimize the cost function defined in
equation (8).

3.1 Genetic algorithm
The GA is a non-deterministic optimization method
based on a population and was developed by John
Holland in the '60s and first published in 1975 [11].
Based on the theory of Darwinian evolution, the GA
simulates the evolution of a population of solutions
to optimize a problem.Like living organisms adapt
to their environment, the solutions of the GA to
adapt to the cost function in an iterative process that
simulates the crossover and mutation of genes.In our
implementation, we use a binary encoding and
randomly generate a population of possible
solutions and . The GA then modifies this
population of candidate solution for a near-optimal
final solution. The selection mechanism used is the
stochastic universal sampling based on the ranking
of solutions [12]. We also use the principle of
elitism in order to improve the convergence of the

algorithm [12]. The flow chart of the GA and the
genetic operators used are shown in Fig. 2 and Fig.
3.

Fig. 2. Flow chart for the genetic algorithm

(a)

(b)

(c)

Fig.3. Genetic operators used: (a) single-point
crossover, (b) bit-flip mutation, (b) bit-swap
mutation

3.2 Particle swarm optimization
The PSO is a non-deterministic optimization method
also based on population and was developed by
Kennedy and Eberhard in 1995 [13]. The algorithm
simulates the motion of a swarm of particles in a
search space of one or more dimensions to an
optimal position. The position of each particle
represents a candidate solution and is initialized
randomly.At each step of the iterative procedure, the

WSEAS TRANSACTIONS on POWER SYSTEMS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-350X 354 Volume 9, 2014

particle velocity is calculated individually based on
the previous speed (inertia), the best position ever
occupied by the particle (personal influence) and the
best position ever occupied by any particle of swarm
(social influence).

As defined in [14], the equations to update the
velocity and position of a particle at iteration t are as
follows:

 (13)

 (14)

where variables in bold are vectors; is the velocity
of a particle; is its position; is the best position
ever occupied by the particle; is the best position
ever occupied by any particle of the swarm; and

 are vectors of random values between 0 and 1;
and , and are the parameters of inertia,
personal influence and social influence. Still based
on [14], the operating diagram of the PSO is
illustrated in Fig. 4.In our implementation, the
particles move in a space of two dimensions and
their position represents candidate values for and

.

3.3 Simulated annealing
Presented for the first time in 1983 [15], simulated
annealing is a non-deterministic optimization
method which simulates the annealing process in
which atoms in a heated metal escape their local
minimum to eventually settle in an energy level
lower than initially. Similarly to the PSO, one
possible solution is encoded as an atom whose state
varies in a space of one or more dimensions. By
cons, optimization by simulated annealing uses only
one particle.

Fig.4. Flow chart for the particle swarm
optimization
At the beginning of the process, when the
temperature is high, the particle changes its state
almost randomly allowing a higher cost solution to
encourage exploration. As the process progresses
and the temperature drops, this randomness
decreases and the particle is directed primarily
towards a solution that minimizes the cost function.
As defined in [16], the probability of accepting a
better solution is always 1, but defined as follows
for an inferior solution:

 (15)

where is the cost of the current solution
, is the cost of the candidate

solution and is the temperature and is
reduced every iteration following:

 (16)

where is the initial temperature and is a
constant between 0 and 1. In our implementation,
the state of the atom has two dimensions and
represents a value of and . We calculate the
value of following the method presented in [17]
so that a worse solution is initially accepted with a
probability of about 95%. We also calculate the
value so that the final temperature is equal to

. Still according to[16], the flow char for
the simulated annealing is shown in Fig. 5.

Fig.5. Flow chart for the simulated annealing

4. Parallel Implementation
In this paper, we selected three non-deterministic
algorithms in order to cope with the complexity of

WSEAS TRANSACTIONS on POWER SYSTEMS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-350X 355 Volume 9, 2014

flux optimization for IM and produce quasi-optimal
solutions in a very short computation time. Since
multicore CPUs have become moreand more
common in personal computersand
microcontrollers,the execution time can be reduced
whenusing parallel implementations. In this section,
we present our approach to parallelizing the GA, the
PSO and the SA using the “single-program,
multiple-data” parallel programming paradigm. Our
implementation is done using the MATLABTM
Parallel Computing Toolbox 6.0

4.1 Parallel GA
Different approaches have been proposed to
parallelized the GA. They can be classified as:
master-slave, coarse-grain, fine-grain and hybrid
[18]. As discussed in [19], a coarse-grain approach
simulating the evolution of independent populations
is usually preferable for a multi-core execution. In
our parallel implementation of the GA, we divide
the population by the number of processes and each
process simulates an independent swarmbased on
the flow chart in Fig. 2. Our implementation allows
communication between the populations by a
process of migration where the best solutions from
process i are transmitted to process i + 1 where they
will replace the worse solutions. This migration
takes place between steps 6 and 7 in Fig. 2 and
occurs every fifth iteration. As explained in [20],
allowing few generations between migrations slows
down convergence, improves exploration and
reduces the inter-process communication. Our
implementation results in a very good speedup due
to the parallelization of all stages of the algorithm
and the minimization of communication.

4.2 Parallel PSO
Our parallel implementation of the PSO follows the
parallel broadcast method discussed in [21] and is
very similar to our parallel implementation of the
GA. We divide the swarm between the processes
and each process simulates the movement of an
independent swarm. Every fifth iteration, we
compare the best particle of each swarm in order
find the global best particle. This global best particle
is then broadcasted to all swarms. As for the GA,
this implementation parallelizes every step of the
algorithm and minimizes communication resulting
in a superior speedup.

4.3 Parallel SA
Unlike the GA and the PSO, the SA is not a
population based algorithm and is limited to the
simulation of a single solution. In order to maintain
the essence of the algorithm, our parallel

implementation of the SA also uses a single atom or
solution per process with no communication
between the processes. At the end of program, the
costs of the solutions produced by the different
processes are compared the best solution is returned.
Due to the sequential nature of the SA algorithm,
our parallel implementation does not reduce the
computation speed, but improves the quality of the
final solution.

5.0 Results
We present in this section, the results obtained by
our sequential and parallel version of the three
algorithms discussed above. We compare those
results to a brute force search that sequentially
checks all possible values of and within the
search space. When testing and from 0.5 A to
3.5 A using an increment of 0.01 A, the brute force
algorithm evaluates 90 000 candidate solutions
before returning the best one. To verify the accuracy
of the GA, the PSO, the SA and the brute force
search, we compare the results to a reference. This
reference is generated using a brute force approach
with a step of 0.0001 A resulting in an execution
time of more than 2 hours. The configuration
parameters used for each algorithm are shown in
Table 2. All test are performed on a computer
equipped with aquad-core Intel Xeon E3 1230 at 3.2
GHz and 4 GB DDR3 1333 MHz RAM.

Table 2. Configuration parameters for the different
optimization algorithms implemented
Algorithms Configuration parameters Values

GA Chromosome bit width
Population size
Number of generation
Mutation rate
Elitism rate
Generations between
migrations
Number of chromosomes
migrating

10
32
100
5 %
5 %
5
1

PSO Swarm size
Number of iterations

Iterations between global best
particle broadcast

32
100
0.7298
1.4960
1.4960
5

SA Initial probability of accepting
an inferior solution
Final temperature
Number of iteration

95%

0.01 *
Tinitial
2000

Brute-force Increment when searching for 0.01 A

WSEAS TRANSACTIONS on POWER SYSTEMS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-350X 356 Volume 9, 2014

search optimal and

Before we present our results, it is interesting to
visualize an example of the losses for different
magnetic flux. Fig. 6 shows the operating losses
versus and for an angular speed of 150 rad/s
and a required torque of 5 N*m. It is important to
note that the surface is limited by the constraints
presented at equations (9), (10) and (11) and only
shows the losses associated with values of and
that generate the required electromagnetic torque
without exceeding the maximum current and voltage
of the IM.

Fig.6. Losses versus id and iq for ωr = 150 rad/s and
Te = 5 N*m

We then use the GA, the PSO, the SA and the
brute force search to find the optimal values and

 that minimize the equation (8). The calculated
values of , and associated losses for different
speeds and loads are listed in Table 3(average of
1000 trials). We also present in this table the
differences between the results obtained by our
optimization algorithms and the reference. The best
results are printed in bolds and show that the PSO
generally produced solutions that are closer to the
reference and that yield smaller losses than the other
three algorithms. We also note that the PSO took
0.05 s to execute which is 20x faster than for the
GA, 1.8x faster than the SA and 17xfaster than for
the brute force search.

Next, we repeat this test using our parallel
versions of the GA, the PSO and the SA. In order to
provide a fair comparison of the execution time, we
also parallelized the brute force search. Our
implementation divides the search space by the
number of processes and each process performs a
search on its subspace. Once completed, the results
produced by each process are compared and the best
solution is returned. Although not limited to 4
processes, all algorithms are run using 4 processes
in order to maximize the efficiency on ourquad-core
Intel Xeon E3 1230 CPU. The calculated values of

, and associated losses for different speeds and

loads are listed in Table 4(average of 1000 trials).
The best results are printed in bolds andstill show
that the PSO generally produced solutions that are
closer to the reference and that yield smaller losses
than the other three algorithms. We also measure a
speedup of 3.35x for the PGA, 2.51x for the PPSO
and 3.57x for the brute force search. As discussed
earlier, the PSA is not expected to provide any
speedup. The PPSO remains the preferable approach
producing the best solution in the shortest execution
time. In a real time application, the PPSO would
have the ability to generate the optimal magnetic
flux required for different operating modes at a
frequency of 52.6 Hz which would not be possible
with any the other approaches discussed here. This
makes the PPSO the best solution for real-time flux
optimization on multi-core CPU.

Finally, we use the PPSO to calculate the optimal
values and (Fig. 7 and Fig. 8) and associated
losses (Fig. 9) for speeds ranging from 0 to 300
rad/s and varying loads from 1 to 7 N*m (157 rad/s
and 7 N*m are the nominal values). As we saw in
Table 4, the PGA, the PSA and the parallel brute
force search produce results very close to the PPSO
and the generated surfaces are almost identical to
those of Fig. 7 and Fig. 9.

Table 3. Flux with associated losses as computed by
the Sequential GA, the Sequential PSO, the
Sequential SA and the Sequential brute force search
for different speeds and torques (Average of 1000
trials)
Variables Torque,

speed
(N*m,
rad/s)

Optimization Algorithms

GA PSO SA Brute-
force

search

Reference

Id (A) 4, 100 1.645 1.660 1.661 1.690 1.6598
4, 150 1.498 1.486 1.488 1.500 1.4863
6, 100 2.031 2.033 2.036 2.030 2.0328
6, 150 1.902 1.821 1.824 1.850 1.8203

Iq (A) 4, 100 1.961 1.924 1.927 1.890 1.9238
4, 150 2.147 2.148 2.151 2.130 2.1485
6, 100 2.366 2.356 2.357 2.360 2.3562
6, 150 2.538 2.630 2.631 2.590 2.6313

Losses
(W)

4, 100 80.966 79.767 79.996 79.836 79.7635
4, 150 100.689 99.728 100.007 99.794 99.7228
6, 100 120.192 119.651 119.903 119.670 119.6452
6, 150 151.799 149.591 149.902 149.713 149.5841

|Id
ref - Id|

(A)
4, 100 0.015 0.000 0.002 0.030 N/A
4, 150 0.011 0.000 0.002 0.014 N/A
6, 100 0.002 0.000 0.003 0.003 N/A
6, 150 0.082 0.001 0.003 0.030 N/A

|Iq
ref – Iq|

(A)
4, 100 0.037 0.000 0.003 0.034 N/A
4, 150 0.002 0.000 0.003 0.018 N/A
6, 100 0.010 0.000 0.000 0.004 N/A
6, 150 0.094 0.001 0.000 0.041 N/A

Execution
time (s)

4, 100 1.008 0.049 0.087 0.840 8 762.4
4, 150 1.001 0.048 0.086 0.832 8 643.5
6, 100 1.001 0.049 0.086 0.834 8 635.2
6, 150 1.003 0.049 0.086 0.835 8 659.7

WSEAS TRANSACTIONS on POWER SYSTEMS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-350X 357 Volume 9, 2014

Table 4. Flux with associated losses as computed by
the Parallel GA, the Parallel PSO, the Parallel SA
and the Parallel brute force search for different
speeds and torques (Average of 1000 trials)
Variables Torque,

speed
(N*m,
rad/s)

Optimization Algorithms

PGA PPSO PSA P
Brute-
force

search

Reference

Id (A) 4, 100 1.644 1.660 1.660 1.690 1.6598
4, 150 1.501 1.486 1.486 1.500 1.4863
6, 100 2.020 2.032 2.034 2.030 2.0328
6, 150 1.859 1.822 1.821 1.850 1.8203

Iq (A) 4, 100 1.956 1.923 1.925 1.890 1.9238
4, 150 2.137 2.149 2.151 2.130 2.1485
6, 100 2.375 2.357 2.356 2.360 2.3562
6, 150 2.587 2.630 2.632 2.590 2.6313

Losses
(W)

4, 100 80.598 79.767 79.854 79.836 79.7635
4, 150 100.445 99.728 99.831 99.794 99.7228
6, 100 119.975 119.650 119.747 119.670 119.6452
6, 150 150.890 149.591 149.706 149.713 149.5841

|Id
ref - Id|

(A)
4, 100 0.016 0.000 0.000 0.030 N/A
4, 150 0.014 0.000 0.000 0.014 N/A
6, 100 0.013 0.000 0.001 0.003 N/A
6, 150 0.039 0.001 0.001 0.030 N/A

|Iq
ref – Iq|

(A)
4, 100 0.032 0.000 0.001 0.034 N/A
4, 150 0.011 0.000 0.002 0.018 N/A
6, 100 0.018 0.001 0.001 0.004 N/A
6, 150 0.044 0.002 0.001 0.041 N/A

Execution
time (s)

4, 100 0.288 0.020 0.088 0.229 8 762.4
4, 150 0.293 0.019 0.090 0.231 8 643.5
6, 100 0.307 0.019 0.088 0.260 8 635.2
6, 150 0.307 0.019 0.088 0.214 8 659.7

Fig.7. Optimal id for different speed and torque as
computed by the PPSO

Fig.8. Optimal iq for different speed and torque as
computed by the PPSO

Fig.9. Losses associated with the optimal id and iq
for different speed and torque as computed by the
PPSO

9. Conclusion
In this paper we have shown how the GA, the PSO
and the SA can be used to calculate the value of the
magnetic flux in induction motor for optimal
efficiency. We have also shown how the execution
time of the GA and PSO can be significantly
reduced using a parallel implementation on a multi-
core CPU. The PPSO is the most efficient algorithm
that calculates the reference magnetic flux in 0.02 s
with accuracy better than ±0.002A. With the
obtained computation time, it is no longer necessary
to use off line look-up tables for magnetic flux
generation, even when the induction motor
parameters changes.

References:
[1] M. Mutluer, O. Bilgin, and M. Cunkas,

“Parameter determination of induction
machines by hybrid genetic algorithms,” 11th
International Conference on Knowledge-Based
and Intelligent Information and Engineering
Systems, KES 2007, and 17th Italian
Workshop on Neural Networks, WIRN 2007,

WSEAS TRANSACTIONS on POWER SYSTEMS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-350X 358 Volume 9, 2014

September 12, 2007 - September 14, 2007,
Vietri sul Mare, Italy: Springer Verlag, 2007,
pp. 116–124.

[2] H.M. Emara, W. Elshamy, and A. Bahgat,
“Parameter identification of induction motor
using modified particle swarm optimization
algorithm,” 2008 IEEE International
Symposium on Industrial Electronics (ISIE
2008), 30 June-2 July 2008, Piscataway, NJ,
USA: IEEE, 2008, p. 841–7.

[3] C. Guangyi, G. Wei, and H. Kaisheng, “On
line parameter identification of an induction
motor using improved particle swarm
optimization,” 26th Chinese Control
Conference, CCC 2007, July 26, 2007 - July
31, 2007, Zhangjiajie, China: Inst. of Elec. and
Elec. Eng. Computer Society, 2007, pp. 745–
749.

[4] D.H. Kim, “GA–PSO based vector control of
indirect three phase induction motor,” Applied
Soft Computing, vol. 7, Mar. 2007, pp. 601–
611.

[5] E. Poirer, M. Ghribi, and A. Kaddouri, “Loss
minimization control of induction motor drives
based on genetic algorithm,” Cambridge, MA:
2001, pp. 475–478.

[6] L.R. Valdenebro and E. Bim, “A genetic
algorithms approach for adaptive field oriented
control of induction motor drives,”
Proceedings of Electric Machines and Drives
Conference, 9-12 May 1999, Piscataway, NJ,
USA: IEEE, 1999, p. 643–5.

[7] E.S. Abdin, G.A. Ghoneem, H.M.M. Diab,
and S.A. Deraz, “Efficiency optimization of a
vector controlled induction motor drive using
an artificial neural network,” Industrial
Electronics Society, 2003. IECON ’03. The
29th Annual Conference of the IEEE, 2003, pp.
2543– 2548 Vol.3.

[8] Z. Rouabah, F. Zidani, and B. Abdelhadi,
“Efficiency optimization of induction motor
drive using fuzzy logic and genetic
algorithms,” 2008 IEEE International
Symposium on Industrial Electronics (ISIE
2008), 30 June-2 July 2008, Piscataway, NJ,
USA: IEEE, 2008, p. 737–42.

[9] S. Lim and K. Nam, “Loss-minimising control
scheme for induction motors,” IEE
Proceedings: Electric Power Applications, vol.
151, 2004, pp. 385–397.

[10] E. Mendes, A. Baba, and A. Razek, “Losses
minimization of a field oriented controlled
induction machine,” Seventh International
Conference on Electrical Machines and Drives,
11-13 Sept. 1995, London, UK: IEE, 1995, p.
310–14.

[11] J.H. Holland, Adaptation in Natural and
Artificial Systems, 1975.

[12] X. Yu and M. Gen, Introduction to
Evolutionary Algorithms, London: Springer,
2010.

[13] J. Kennedy and R. Eberhart, “Particle swarm
optimization,” Proceedings of the 1995 IEEE
International Conference on Neural Networks.
Part 1 (of 6), November 27, 1995 - December
1, 1995, Perth, Aust: IEEE, 1995, pp. 1942–
1948.

[14] M. Clerc, Particle Swarm Optimization,
London: ISTE, 2006.

[15] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi,
“Optimization by Simulated Annealing,” May.
1983, pp. 671–680.

[16] E.-G. Talbi, Metaheuristics, From Design to
Implementation, New Jersey: Wiley, 2009.

[17] C.M. Tan, Simulated Annealing, Vienna,
Austria: I-Tech, 2008.

[18] S.N. Sivanandam and S.N. Deepa,
Introduction to Genetic Algorithms, Berlin
Heidelberg New York: Springer, 2008.

[19] Long Zheng, Yanchao Lu, Mengwei Ding,
Yao Shen, Minyi Guoz, and Song Guo,
“Architecture-based Performance Evaluation of
Genetic Algorithms on Multi/Many-core
Systems,” Computational Science and
Engineering (CSE), 2011 IEEE 14th
International Conference on, 2011, pp. 321–
334.

[20] B.T. Skinner, H.T. Nguyen, and D.K. Liu,
“Performance Study of a Multi-Deme Parallel
Genetic Algorithm with Adaptive Mutation,”
Palmerston North, New Zealand: 2004.

[21] K.-Y. Tu and Z.-C. Liang, “Parallel
computation models of particle swarm
optimization implemented by multiple
threads,” Expert Systems with Applications,
vol. 38, May. 2011, pp. 5858–5866.

WSEAS TRANSACTIONS on POWER SYSTEMS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-350X 359 Volume 9, 2014

